關於內心及外心以求圓與切線的相交點、圓的直角坐標系統

主題為「關於內心及外心以求圓與切線的相交點、圓的直角坐標系統」的題目樣本

題目

OPQ\triangle{O}{P}{Q} 為一鈍角三角形。將 OPQ\triangle{O}{P}{Q} 的內心及外心分別記為 I{I}J{J} 。已知 P{P}I{I}J{J} 共線。

(a)證明 OP{O}{P}=PQ={P}{Q} .(3 分)
(b)引入一直角坐標系統使得 O{O}Q{Q} 的坐標分別為 (0,0){\left({0},{0}\right)}(40,30){\left({40},{30}\right)} ,而 P{P}y{y} 坐標為 19{19} 。設 C{C} 為通過 O{O}P{P}Q{Q} 的圓。
(i)C{C} 的方程。
(ii)L1{L}_{{1}}L2{L}_{{2}}C{C} 的兩切線使得每一切線的斜率均為 34\dfrac{{3}}{{4}}L1{L}_{{1}}y{y} 截距較 L2{L}_{{2}} 大。 L1{L}_{{1}} 分別與 x{x} 軸及 y{y} 軸相交於 S{S}T{T} ,而 L2{L}_{{2}} 分別與 x{x} 軸及 y{y} 軸相交於 U{U}V{V} 。某人宣稱梯形 STUV{S}{T}{U}{V} 的面積超過 17000{17000} 。該宣稱是否正確?試解釋你的答案。
(9 分)

題解

I{I}J{J}P{P}O{O}Q{Q}Y{Y}Z{Z}X{X}

(a)如下圖所示,當中 YJ{Y}{J}ZJ{Z}{J} 分別為 OP{O}{P}PQ{P}{Q} 的垂直平分線。
考慮 PYJ\triangle{P}{Y}{J}PZJ\triangle{P}{Z}{J}
YPJ\angle{Y}{P}{J}=ZPJ=\angle{Z}{P}{J}內心的定義
PJ{P}{J}=PJ={P}{J}common
PJY\angle{P}{J}{Y}=18090YPJ={180}^{\circ}-{90}^{\circ}-\angle{Y}{P}{J}∠ sum of △
=18090ZPJ={180}^{\circ}-{90}^{\circ}-\angle{Z}{P}{J}
=PJZ=\angle{P}{J}{Z}
∴  PYJ=PZJ\triangle{P}{Y}{J}\stackrel{\sim}{=}\triangle{P}{Z}{J}ASA
∴  PY=PZ{P}{Y}={P}{Z}corr. sides, ≅△s
OP{O}{P}
=2(PY)={2}{\left({P}{Y}\right)}
=2(PZ)={2}{\left({P}{Z}\right)}
=PQ={P}{Q}
(a) 評分標準:
情況 1附有正確理由的正確完整證明。3M
情況 2未附有正確理由的正確完整證明。2M
情況 3未附有正確理由的部分完整證明。1M
注意:任何基於 PIXJ{P}{I}{X}{J} 為共線的假設的證明應予零分。
(b)(i)
P{P} 的坐標為 (p,19){\left({p},{19}\right)}
OP{O}{P}=PQ={P}{Q}已證明
p2+192\sqrt{{{p}^{{2}}+{19}^{{2}}}}=(p40)2+(1930)2=\sqrt{{{\left({p}-{40}\right)}^{{2}}+{\left({19}-{30}\right)}^{{2}}}}1M給利用 (a) 的結果
p2+361{p}^{{2}}+{361}=p280p+1600+121={p}^{{2}}-{80}{p}+{1600}+{121}
80p{80}{p}=1360={1360}
p{p}=17={17}
∴  P{P} 的坐標為 (17,19){\left({17},{19}\right)}1A
C{C} 的方程為 x2+y2+Dx+Ey+F=0{x}^{{2}}+{y}^{{2}}+{D}{x}+{E}{y}+{F}={0}1M給代入 O{O}, P{P}R{R}
O(0,0){O}{\left({0},{0}\right)} 代入至 C{C} 的方程中,
(0)2+(0)2+D(0)+E(0)+F{\left({0}\right)}^{{2}}+{\left({0}\right)}^{{2}}+{D}{\left({0}\right)}+{E}{\left({0}\right)}+{F}=0={0}
F{F}=0={0}
Q(40,30){Q}{\left({40},{30}\right)}P(17,19){P}{\left({17},{19}\right)} 分別代入至 C{C} 的方程中,
(40)2+(30)2+(40)D+(30)E{\left({40}\right)}^{{2}}+{\left({30}\right)}^{{2}}+{\left({40}\right)}{D}+{\left({30}\right)}{E}=0={0}
(17)2+(19)2+(17)D+(19)E{\left({17}\right)}^{{2}}+{\left({19}\right)}^{{2}}+{\left({17}\right)}{D}+{\left({19}\right)}{E}=0={0}
4D+3E+250{4}{D}+{3}{E}+{250}=0={0}(1)\ldots{\left({1}\right)}
17D+19E+650{17}{D}+{19}{E}+{650}=0={0}(2)\ldots{\left({2}\right)}
解後可得 D=112{D}=-{112}E=66{E}={66}
∴  C{C} 的方程為 x2+y2112x+66y{x}^{{2}}+{y}^{{2}}-{112}{x}+{66}{y}=0={0}1A或等價
(b)(ii)
分別設 L1{L}_{{1}}L2{L}_{{2}}y{y} 截距為 c{c}
x2+y2112x+66y{x}^{{2}}+{y}^{{2}}-{112}{x}+{66}{y}=0={0}
y{y}=34x+c=\dfrac{{3}}{{4}}{x}+{c}(2)\ldots{\left({2}\right)}
(2){\left({2}\right)}(1){\left({1}\right)} 中:
x2+(34x+c)2112x+66(34x+c){x}^{{2}}+{\left(\dfrac{{3}}{{4}}{x}+{c}\right)}^{{2}}-{112}{x}+{66}{\left(\dfrac{{3}}{{4}}{x}+{c}\right)}=0={0}
2516x2+(32c1252)x+(c2+66c)\dfrac{{25}}{{16}}{x}^{{2}}+{\left(\dfrac{{3}}{{2}}{c}-\dfrac{{125}}{{2}}\right)}{x}+{\left({c}^{{2}}+{66}{c}\right)}=0={0}
25x2+(24c1000)x+(16c2+1056c){25}{x}^{{2}}+{\left({24}{c}-{1000}\right)}{x}+{\left({16}{c}^{{2}}+{1056}{c}\right)}=0={0}()\ldots{\left(\ast\right)}
由於 L1{L}_{{1}}L2{L}_{{2}}C{C} 的切線,因此 (){\left(\ast\right)} 只有一個重根。
(){\left(\ast\right)} 的判別式 =0={0}
(24c1000)24(25)(16c2+1056c){\left({24}{c}-{1000}\right)}^{{2}}-{4}{\left({25}\right)}{\left({16}{c}^{{2}}+{1056}{c}\right)}=0={0}
1024c2153600c+1000000-{1024}{c}^{{2}}-{153600}{c}+{1000000}=0={0}
(4c+625)(4c25){\left({4}{c}+{625}\right)}{\left({4}{c}-{25}\right)}=0={0}
c{c}=6254=-\dfrac{{625}}{{4}}c=254{c}=\dfrac{{25}}{{4}}
因此, L1:y=34x+254,L2:y=34x6254{L}_{{1}}:{y}=\dfrac{{3}}{{4}}{x}+\dfrac{{25}}{{4}},{L}_{{2}}:{y}=\dfrac{{3}}{{4}}{x}-\dfrac{{625}}{{4}}2ML1{L}_{{1}}L2{L}_{{2}} 的方程
∴  S=(253,0),T=(0,254),U=(6253,0),V=(0,6254){S}={\left(-\dfrac{{25}}{{3}},{0}\right)},{T}={\left({0},\dfrac{{25}}{{4}}\right)},{U}={\left(\dfrac{{625}}{{3}},{0}\right)},{V}={\left({0},-\dfrac{{625}}{{4}}\right)}1A給四點
STUV{S}{T}{U}{V} 的面積
=(TSU={\left(\triangle{T}{S}{U}\right.} 的面積)+(VSU{)}+{\left(\triangle{V}{S}{U}\right.} 的面積){)}接受其他分割的方法
=12(SU)(OT)+12(SU)(OV)=\dfrac{{1}}{{2}}{\left({S}{U}\right)}{\left({O}{T}\right)}+\dfrac{{1}}{{2}}{\left({S}{U}\right)}{\left({O}{V}\right)}
=12(6253+253)(254)+12(6253+253)(6254)=\dfrac{{1}}{{2}}{\left(\dfrac{{625}}{{3}}+\dfrac{{25}}{{3}}\right)}{\left(\dfrac{{25}}{{4}}\right)}+\dfrac{{1}}{{2}}{\left(\dfrac{{625}}{{3}}+\dfrac{{25}}{{3}}\right)}{\left(\dfrac{{625}}{{4}}\right)}
=1760416={17604}\dfrac{{1}}{{6}}接受答案準確至 17600{17600}
>17000\gt{17000}
因此,同意該宣稱。1A
下圖所示為該坐標系統,為了方便展示,該圖像並不依比例繪成。

x{x}y{y}T{T}S{S}V{V}U{U}O{O}P{P}Q{Q}Y{Y}L1:{L}_{{1}}:y=34x+254{y}=\dfrac{{3}}{{4}}{x}+\dfrac{{25}}{{4}}L2:{L}_{{2}}:y=34x6254{y}=\dfrac{{3}}{{4}}{x}-\dfrac{{625}}{{4}}
其他方法

(a)注意到 J{J}OPQ\triangle{O}{P}{Q} 的外心。
連接 JO{J}{O}JQ{J}{Q}
JO{J}{O}=JP=JQ={J}{P}={J}{Q}radii
JPO\angle{J}{P}{O}=JPQ=\angle{J}{P}{Q}內心的定義
∴  JOP\angle{J}{O}{P}=JPO=JPQ=JQP=\angle{J}{P}{O}=\angle{J}{P}{Q}=\angle{J}{Q}{P}base ∠s, isos. △
考慮 JOP\triangle{J}{O}{P}JQP\triangle{J}{Q}{P}
JOP\angle{J}{O}{P}=JPQ=\angle{J}{P}{Q}已證
JPO\angle{J}{P}{O}=JPQ=\angle{J}{P}{Q}已證
PJ{P}{J}=PJ={P}{J}common
∴  JOP\triangle{J}{O}{P}=JQP\stackrel{\sim}{=}\triangle{J}{Q}{P}AAS
∴  OP{O}{P}=PQ={P}{Q}corr. sides, ≅△s
(a) 評分標準:
情況 1附有正確理由的正確完整證明。3M
情況 2未附有正確理由的正確完整證明。2M
情況 3未附有正確理由的部分完整證明。1M
注意:任何基於 PIXJ{P}{I}{X}{J} 為共線的假設的證明應予零分。
(b)(i)
P{P} 的坐標為 (p,19){\left({p},{19}\right)}
OP{O}{P}=PQ={P}{Q}已證明
p2+192\sqrt{{{p}^{{2}}+{19}^{{2}}}}=(p40)2+(1930)2=\sqrt{{{\left({p}-{40}\right)}^{{2}}+{\left({19}-{30}\right)}^{{2}}}}1M給利用 (a) 的結果
p2+361{p}^{{2}}+{361}=p280p+1600+121={p}^{{2}}-{80}{p}+{1600}+{121}
80p{80}{p}=1360={1360}
p{p}=17={17}
∴  P{P} 的坐標為 (17,19){\left({17},{19}\right)}1A
K{K} 為圓 C{C} 的中心。
OP{O}{P}PQ{P}{Q} 的垂直平分線分別為 P1{P}_{{1}}P2{P}_{{2}}
由於 P1OP{P}_{{1}}\bot{O}{P}P2PQ{P}_{{2}}\bot{P}{Q} ,兩線均必穿過 K{K}圓心平分且垂直弦穿過圓心
透過解下列聯立方程,可求得 K{K} 的坐標。
P1{P}_{{1}}
P2{P}_{{2}}
(x0)2+(y0)2{\left({x}-{0}\right)}^{{2}}+{\left({y}-{0}\right)}^{{2}}=(x17)2+(y19)2={\left({x}-{17}\right)}^{{2}}+{\left({y}-{19}\right)}^{{2}}1M給正確解圓 C{C} 中心的方法
(x17)2+(y19)2{\left({x}-{17}\right)}^{{2}}+{\left({y}-{19}\right)}^{{2}}=(x40)2+(y30)2={\left({x}-{40}\right)}^{{2}}+{\left({y}-{30}\right)}^{{2}}
17x+19y325{17}{x}+{19}{y}-{325}=0={0}(1)\ldots{\left({1}\right)}
23x+11y925{23}{x}+{11}{y}-{925}=0={0}(2)\ldots{\left({2}\right)}
解後,可得 (56,33){\left({56},-{33}\right)}
∴  K{K} 的坐標為 (56,33){\left({56},-{33}\right)}
C{C} 的方程為
(x56)2+(y+33)2{\left({x}-{56}\right)}^{{2}}+{\left({y}+{33}\right)}^{{2}}=(562+(33)2)2={\left(\sqrt{{{56}^{{2}}+{\left(-{33}\right)}^{{2}}}}\right)}^{{2}}
(x56)2+(y+33)2{\left({x}-{56}\right)}^{{2}}+{\left({y}+{33}\right)}^{{2}}=4225={4225}1A或等價
(b)(ii)
K=(56,33){K}={\left({56},-{33}\right)}由 (b)(i)
C{C} 的半徑 =562+(33)2=65=\sqrt{{{56}^{{2}}+{\left(-{33}\right)}^{{2}}}}={65}
留意到 OQ{O}{Q} 的斜率等同於 L1{L}_{{1}}L2{L}_{{2}} 的斜率。
因此, L1{L}_{{1}} 為圓 C{C}P{P} 的切線。
L1{L}_{{1}} 的方程為
y19{y}-{19}=34(x17)=\dfrac{{3}}{{4}}{\left({x}-{17}\right)}
y{y}=34x+254=\dfrac{{3}}{{4}}{x}+\dfrac{{25}}{{4}}
Y(a,b){Y}{\left({a},{b}\right)} 為一在 L2{L}_{{2}} 上的點使得 PY{P}{Y} 為圓 C{C} 的一直徑。
17+a2=56\dfrac{{{17}+{a}}}{{2}}={56}19+b2=33\dfrac{{{19}+{b}}}{{2}}=-{33}mid-pt. theorem
a=95{a}={95}b=33{b}=-{33}
L2{L}_{{2}} 的方程為
y(33){y}-{\left(-{33}\right)}=34(x95)=\dfrac{{3}}{{4}}{\left({x}-{95}\right)}
y{y}=34x6254=\dfrac{{3}}{{4}}{x}-\dfrac{{625}}{{4}}2ML1{L}_{{1}}L2{L}_{{2}}
∴  S=(253,0),T=(0,254),U=(6253,0),V=(0,6254){S}={\left(-\dfrac{{25}}{{3}},{0}\right)},{T}={\left({0},\dfrac{{25}}{{4}}\right)},{U}={\left(\dfrac{{625}}{{3}},{0}\right)},{V}={\left({0},-\dfrac{{625}}{{4}}\right)}1A給四點
梯形 STUV{S}{T}{U}{V} 的面積
=SV2(ST+VU)=\dfrac{{{S}{V}}}{{2}}{\left({S}{T}+{V}{U}\right)}
=(65+652)((253)2+(254)2+(6253)2+(6254)2)={\left(\dfrac{{{65}+{65}}}{{2}}\right)}{\left(\sqrt{{{\left(-\dfrac{{25}}{{3}}\right)}^{{2}}+{\left(\dfrac{{25}}{{4}}\right)}^{{2}}}}+\sqrt{{{\left(\dfrac{{625}}{{3}}\right)}^{{2}}+{\left(-\dfrac{{625}}{{4}}\right)}^{{2}}}}\right)}SV{S}{V}= C{C} 的直徑1Af.t.
=1760416={17604}\dfrac{{1}}{{6}}接受答案準確至 17600{17600}
>17000\gt{17000}
因此,同意該宣稱。1A
下圖所示為該坐標系統,為了方便展示,該圖像並不依比例繪成。

I{I}J{J}P{P}O{O}Q{Q}Y{Y}Z{Z}X{X}
x{x}y{y}T{T}S{S}V{V}U{U}O{O}P{P}Q{Q}Y{Y}L1:{L}_{{1}}:y=34x+254{y}=\dfrac{{3}}{{4}}{x}+\dfrac{{25}}{{4}}L2:{L}_{{2}}:y=34x6254{y}=\dfrac{{3}}{{4}}{x}-\dfrac{{625}}{{4}}K{K}


See Also


專業備試計劃

DSE Preparation Plan


專攻 DSE 數學科,助你高效穩固地提昇評級

Level 4+ 保證及 5** 獎賞

僅中四至中六適用

最優化操練路線

一站滿足所有操數需要

豐富全面溫習套裝及備試工具

首 14 日無條件全額退款



常見問題

有英文版嗎?

有。請在畫面頂部按「用戶」圖示,然後按「設定」。在語言選項中,你可分別選擇「平台語言」及「數學語言」,兩者皆有中英文版。

ePractice 是甚麼?

ePractice 是一個專為中四至中六而設的應用程式,旨為協助學生高效地預備 DSE 數學(必修部分)考試。ePractice 是網站應用程式,因此無論使用任何裝置、平台,都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

為甚麼適合中四至中六學生?

由於正式考試(DSE 數學必修部分)有三分之二(約 67%)的內容是初中程度,因此中四學生已經可以操練大部分的試題。提早開始操練,不但可以早一步掌握考試技巧,更可同時鞏固初中的知識,幫助理解高中數學。ePractice 建議學生只需每天操練約 3-5 題,非常輕鬆,也不需花大量時間,已經可以在不知不覺間高效提昇數學能力了。


簡介

ePractice 可以取代傳統補習嗎?

雖然 ePractice 不能完全取代傳統補習(包括補習班及私人補習),但可以絕大程度滿足學生的補習需求,原因除了 ePractice 有特製的極效練習之外,還有豐富的優質教學影片,其講解的效能比一般補習老師更佳!高效練習配合優質講解 ePractice 有超越補習成效的能力!

ePractice 是甚麼?

ePractice 是一個專為中四至中六而設的應用程式,旨為協助學生高效地預備 DSE 數學(必修部分)考試。ePractice 是網站應用程式,因此無論使用任何裝置、平台,都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

為甚麼適合中四至中六學生?

由於正式考試(DSE 數學必修部分)有三分之二(約 67%)的內容是初中程度,因此中四學生已經可以操練大部分的試題。提早開始操練,不但可以早一步掌握考試技巧,更可同時鞏固初中的知識,幫助理解高中數學。ePractice 建議學生只需每天操練約 3-5 題,非常輕鬆,也不需花大量時間,已經可以在不知不覺間高效提昇數學能力了。


帳戶

「體驗帳戶」可以使用多久?

「體驗帳戶」不會過期,但用戶只能做 30 條題目,而且觀看少部分的知識內容。如希望無限量使用 ePractice 的所有練習服務及內容,請成為我們的會員!


有關訂購

如何訂購正式會員?

在主頁按「訂購備試計劃」,再按「選購計劃」,然後選擇適合你的項目。完成後,系統會為你製作訂單,你只需要根據訂單上的簡易指示繳款即可。

甚麼時候會啟動會員服務?

如閣下使用 PayPal 成功交易,您的會員服務會立即啟動;至於其他付款方式,請把收據發送給我們,我們會在一個工作天內核對交易並啟動您的會藉。

如何查看我的訂單?

在右上角按「用戶」圖像,在「帳單」部分內按「我的帳單」。


有關繳款

有甚麼付款方式?

閣下可使用信用卡 / AlipayHK / Faster Payment System (FPS) 付款。 在確定訂單及揀選付款方式後,會有進一步的流程解說。

退款政策

ePractice 提供對所有會員服務購買的 14 天無條件退款保證(恕不適用於服務期少於兩個月的計劃)。請聯絡我們並提供相關訂單編號以進行退款。如您透過信用卡付款,款項將退回至您的信用卡。如使用其他付款方式,請提供您的銀行帳號、FPS ID 或 PayMe ID 以便進行退款轉帳。


使用疑難

有英文版嗎?

有。請在畫面頂部按「用戶」圖示,然後按「設定」。在語言選項中,你可分別選擇「平台語言」及「數學語言」,兩者皆有中英文版。

可以在 ePractice 列印練習或模擬試卷嗎?

只有「教師配套」才能使用「題目編輯器」列印練習及模擬試卷。學生必須在 ePractice 上進行練習。


聯絡我們

查詢使用疑難、 大量訂購、合作事宜、慈善、發展建議等等,歡迎以下列方法聯絡我們:






Initiating...


HKDSE 數學試題練習平台


Powered by ePractice

ePractice

HKDSE 專業備試平台



「我們的正常之處,就在於自己懂得自己的不正常。」

村上春樹《挪威的森林》