Linear Programming

Question Sample Titled 'Linear Programming'

 (a) In the figure, the shaded region (including the boundary) is bounded by straight lines ${L}_{{1}}$ , ${L}_{{2}}$ , the ${x}$-axis and the ${y}$-axis. ${L}_{{1}}$ and ${L}_{{2}}$ intersect at ${\left({4},{4}\right)}$ . Find the system of inequalities representing the shaded region. (4 marks)

${x}$${y}$${\left({4},{4}\right)}$${6}$${10}$${L}_{{1}}$${L}_{{2}}$${O}$

 (b) Bianca wants to produce two types of synthetic paper: synthetic paper ${A}$ and synthetic paper ${B}$ . The sum of the total weight of synthetic paper ${B}$ and ${2}$ times of the total weight of synthetic paper ${A}$ cannot be more than ${12}$ $\text{kg}$ . The cost of producing synthetic paper ${A}$ is $40$40$$/$$\text{kg}$ and the cost of producing synthetic paper ${B}$ is$60$60$$/$$\text{kg}$ . The total cost of synthetic paper ${A}$ and synthetic paper ${B}$ cannot be more than $400$400$ . Suppose that the profits of selling ${1}$ $\text{kg}$ of synthetic paper ${A}$ and synthetic paper ${B}$ are$85$85$  and $125$125$  respectively. Bianca claims that the total profit$Z$Z$  can be more than $860$860$  . Do you agree? Explain your answer. (4 marks) 題解  (a) Equation of ${L}_{{1}}:$ $\dfrac{{{4}-{0}}}{{{4}-{6}}}$ $=\dfrac{{{y}-{0}}}{{{x}-{6}}}$ 1M ${2}{x}+{y}-{12}$ $={0}$ 1A Equation of ${L}_{{2}}:$ $\dfrac{{{4}-{0}}}{{{4}-{10}}}$ $=\dfrac{{{y}-{0}}}{{{x}-{10}}}$ ${2}{x}+{3}{y}-{20}$ $={0}$ 1A The system of inequalities: ${2}{x}+{y}-{12}$ $\le{0}$ 1A ${2}{x}+{3}{y}-{20}$ $\le{0}$ ${x}$ $\ge{0}$ ${y}$ $\ge{0}$ (b) Let ${x}$ $\text{kg}$ and ${y}$ $\text{kg}$ be the weights of synthetic paper ${A}$ and synthetic paper ${B}$ produced respectively. From the given information, we have ${2}{x}+{y}$ $\le{12}$ 1A ${40}{x}+{60}{y}$ $\le{400}$ ${x}$ $\ge{0}$ ${y}$ $\ge{0}$ ${2}{x}+{y}-{12}$ $\le{0}$ ${2}{x}+{3}{y}-{20}$ $\le{0}$ ${x}$ $\ge{0}$ ${y}$ $\ge{0}$ The objective function is ${Z}$ $={85}{x}+{125}{y}$ 1A The ${y}$-intercept of ${L}_{{2}}$ is $\dfrac{{20}}{{3}}$ . Consider the vertices of shaded region. At ${\left({0},{0}\right)},{Z}={0}$ 1M At ${\left({6},{0}\right)},{Z}={510}$ At ${\left({0},\dfrac{{20}}{{3}}\right)},{Z}=\dfrac{{2500}}{{3}}$ At ${\left({4},{4}\right)},{Z}={840}$ Thus, the maximum profits is$840$840$  . Therefore, Bianca is disagreed. 1A

專業備試計劃

DSE Preparation Plan

Level 4+ 保證及 5** 獎賞

常見問題

ePractice 是甚麼？

ePractice 是一個專為中四至中六而設的應用程式，旨為協助學生高效地預備 DSE 數學（必修部分）考試。ePractice 是網站應用程式，因此無論使用任何裝置、平台，都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

簡介

ePractice 可以取代傳統補習嗎？

ePractice 是甚麼？

ePractice 是一個專為中四至中六而設的應用程式，旨為協助學生高效地預備 DSE 數學（必修部分）考試。ePractice 是網站應用程式，因此無論使用任何裝置、平台，都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

帳戶

「體驗帳戶」可以使用多久？

「體驗帳戶」不會過期，但用戶只能做 30 條題目，而且觀看少部分的知識內容。如希望無限量使用 ePractice 的所有練習服務及內容，請成為我們的會員！

有關繳款

ePractice 提供對所有會員服務購買的 14 天無條件退款保證（恕不適用於服務期少於兩個月的計劃）。請聯絡我們並提供相關訂單編號以進行退款。如您透過信用卡付款，款項將退回至您的信用卡。如使用其他付款方式，請提供您的銀行帳號、FPS ID 或 PayMe ID 以便進行退款轉帳。

Initiating...

HKDSE 數學試題練習平台