### geometric seq: area of hexagons

Question Sample Titled 'geometric seq: area of hexagons'

Destiny was making a paper figure. At first, she cut regular hexagon from paper. The length of each side is ${a}$ $\text{cm}$.

 (a) Find the area of the hexagon in terms of ${a}$. (2 marks) (b) After she cut the hexagon, she cut another smaller regular hexagon from paper and then placed it onto the first paper hexagon such that the vertices of the second hexagon lied on the mid-points of the sides of the first hexagon. She repeated this process for a number of times as shown in the figure.

$\ldots$

 (i) Find the area of the second and the third regular hexagons in terms of ${a}$. (ii) If the total sum of area of all regular hexagons that Destiny cut is $\dfrac{{{42591}\sqrt{{3}}}}{{8192}}{a}^{{2}}$ $\text{cm}$ , find the number of hexagons that she cut.  (5 marks)

 (a) The hexagon consists of six equilateral triangles with side ${a}$ $\text{cm}$ . Required area $={6}\times{\left(\dfrac{{1}}{{2}}\times{a}^{{2}}{\sin{{60}}}^{\circ}\right)}$ 1M  $=\dfrac{{{3}\sqrt{{3}}}}{{2}}{a}^{{2}}$ $\text{cm}^{{2}}$ 1A  (bi) By the cosine formula, the side length of the second hexagon $=\sqrt{{{\left(\dfrac{{a}}{{2}}\right)}^{{2}}+{\left(\dfrac{{a}}{{2}}\right)}^{{2}}-{2}{\left(\dfrac{{a}}{{2}}\right)}{\left(\dfrac{{a}}{{2}}\right)}{\cos{{120}}}^{\circ}}}$ 1M $=\dfrac{{\sqrt{{3}}{a}}}{{2}}$ $\text{cm}$  Thus, Side length of ${\left({n}+{1}\right)}^{{{t}{h}}}$ hexagon$:$Side length of ${n}^{{{t}{h}}}$ hexagon $=\dfrac{{\sqrt{{3}}{a}}}{{2}}:{a}$ i.e. Common ratio of sides  $=\dfrac{{\sqrt{{3}}}}{{2}}$ So, common ratio of areas  $={\left(\dfrac{{\sqrt{{3}}}}{{2}}\right)}^{{2}}=\dfrac{{3}}{{4}}$  ∴  The area of the second hexagon $=\dfrac{{{3}\sqrt{{3}}}}{{2}}{a}^{{2}}\times{\left(\dfrac{{3}}{{4}}\right)}$  $=\dfrac{{{9}\sqrt{{3}}}}{{8}}{a}^{{2}}$ $\text{cm}^{{2}}$ 1A The area of the third hexagon $=\dfrac{{{3}\sqrt{{3}}}}{{2}}{a}^{{2}}\times{\left(\dfrac{{3}}{{4}}\right)}^{{2}}$  $=\dfrac{{{27}\sqrt{{3}}}}{{32}}{a}^{{2}}$ $\text{cm}^{{2}}$ 1A  (bii) Let ${n}$ be the number of hexagons.  $\dfrac{{{\left(\dfrac{{{3}\sqrt{{3}}}}{{2}}{a}^{{2}}\right)}{\left({1}-{\left(\dfrac{{3}}{{4}}\right)}^{{n}}\right)}}}{{{1}-\dfrac{{3}}{{4}}}}$ $=\dfrac{{{42591}\sqrt{{3}}}}{{8192}}{a}^{{2}}$ 1M ${1}-{\left(\dfrac{{3}}{{4}}\right)}^{{n}}$ $=\dfrac{{14197}}{{16384}}$ ${\log{{\left(\dfrac{{2187}}{{16384}}\right)}}}$ $={\log{{\left({\left(\dfrac{{3}}{{4}}\right)}^{{n}}\right)}}}$ ${\log{{\left(\dfrac{{2187}}{{16384}}\right)}}}$ $={n}{\log{{\left(\dfrac{{3}}{{4}}\right)}}}$ ${n}$ $={7}$ ∴  Destiny cut ${7}$ hexagons. 1A

# 專業備試計劃

DSE Preparation Plan

Level 4+ 保證及 5** 獎賞

### 常見問題

ePractice 是甚麼？

ePractice 是一個專為中四至中六而設的應用程式，旨為協助學生高效地預備 DSE 數學（必修部分）考試。ePractice 是網站應用程式，因此無論使用任何裝置、平台，都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

### 簡介

ePractice 可以取代傳統補習嗎？

ePractice 是甚麼？

ePractice 是一個專為中四至中六而設的應用程式，旨為協助學生高效地預備 DSE 數學（必修部分）考試。ePractice 是網站應用程式，因此無論使用任何裝置、平台，都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

### 帳戶

「體驗帳戶」可以使用多久？

「體驗帳戶」不會過期，但用戶只能做 30 條題目，而且觀看少部分的知識內容。如希望無限量使用 ePractice 的所有練習服務及內容，請成為我們的會員！

### 有關繳款

ePractice 提供對所有會員服務購買的 14 天無條件退款保證（恕不適用於服務期少於兩個月的計劃）。請聯絡我們並提供相關訂單編號以進行退款。如您透過信用卡付款，款項將退回至您的信用卡。如使用其他付款方式，請提供您的銀行帳號、FPS ID 或 PayMe ID 以便進行退款轉帳。

Initiating...

HKDSE 數學試題練習平台