### Find and compare two standard scores and scores in two normally distributed examinations

Question Sample Titled 'Find and compare two standard scores and scores in two normally distributed examinations'

The table below shows the means and the standard deviations of the scores of a large group of students in a Mathematics examination and a Biology examination:


ExaminationMeanStandard deviation
Mathematics${58}$ marks${14}$ marks
Biology${68}$ marks${15}$ marks

The standard score of Ethan in the Mathematics examination is $-{1.5}$ .

 (a) Find the score of Ethan in the Mathematics examination. (2 marks) (b) Assume that the scores in each of the above examinations are normally distributed. Ethan gets ${56}$ marks in the Biology examination. He claims that relative to other students, he performs better in the Biology examination than in the Mathematics examination. Is the claim correct? Explain your answer.  (2 marks)

 (a) Let ${x}$ marks be the score of Ethan in the Mathematics examination. $\dfrac{{{x}-{58}}}{{14}}$ $=-{1.5}$ 1M ${x}$ $={58}+{\left(-{1.5}\right)}{\left({14}\right)}$ ${x}$ $={37}$ 1A Thus, the score of Ethan in the Mathematics examination is ${37}$ marks. (b) The standard score of Ethan in the Biology examination $=\dfrac{{{56}-{68}}}{{15}}$ 1M $=-{0.8}$ $\lt-{1.5}$ Relative to other students, Ethan performs better in the Biology examination than in the Mathematics examination. Thus, the claim is correct. 1A f.t. Caution: Comparing the two absolute difference of Ethan's marks to the means should be awarded zero marks.

 (b) Note that, relative to other students, if Ethan performs equally in both examination, the standard score of both examination should be the same. Let ${y}$ be his score in Biology examination so that Ethan performs equally in both examination. $\dfrac{{{y}-{68}}}{{15}}$ $=-{1.5}$ 1M ${y}$ $={45.5}$ He gets ${56}$ marks in Biology examination, which is higher than ${45.5}$ marks. Therefore, relative to other students, Ethan performs better in the Biology examination than in the Mathematics examination. Thus, the claim is correct. 1A f.t.

# 專業備試計劃

Level 4+ 保證及 5** 獎賞

ePractice 會以電郵、Whatsapp 及電話提醒練習

ePractice 會定期提供溫習建議

Level 5** 獎勵：會員如在 DSE 取得數學 Level 5** ，將獲贈一套飛往英國、美國或者加拿大的來回機票，唯會員須在最少 180 日內每天在平台上答對 3 題 MCQ。

Level 4 以下賠償：會員如在 DSE 未能達到數學 Level 4 ，我們將會全額退回所有會費，唯會員須在最少 180 日內每天在平台上答對 3 題 MCQ。

# FAQ

ePractice 是甚麼？

ePractice 是一個專為中四至中六而設的網站應用程式，旨為協助學生高效地預備 DSE 數學（必修部分）考試。由於 ePractice 是網站應用程式，因此無論使用任何裝置、平台，都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

ePractice 可以取代傳統補習嗎？

1. 會員服務期少於兩個月；或
2. 交易額少於 HK\$100。

Initiating...

HKDSE 數學試題練習平台