Factorize a cubic function and identify whether the three roots are all integers

Question Sample Titled 'Factorize a cubic function and identify whether the three roots are all integers'

題目

Let f(x)=(x3)2(x+h)+k{f{{\left({x}\right)}}}={\left({x}-{3}\right)}^{{2}}{\left({x}+{h}\right)}+{k} , where h{h} and k{k} are constants. When f(x){f{{\left({x}\right)}}} is divided by x3{x}-{3} , the remainder is 4{4}. It is given that f(x){f{{\left({x}\right)}}} is divisible by x4{x}-{4}.

(a)Find h{h} and k{k} .(3 marks)
(b)Someone claims that all the roots of the equation f(x){f{{\left({x}\right)}}}=0={0} are integers. Do you agree? Explain your answer.(3 marks)

題解

(a)By remainder theorem,
f(3){f{{\left({3}\right)}}}=4={4}
(33)2(x+h)+k{\left({3}-{3}\right)}^{{2}}{\left({x}+{h}\right)}+{k}=4={4}
k{k}=4={4}1A
By remainder theorem,
f(4){f{{\left({4}\right)}}}=0={0}1M
(43)2(4+h)+4{\left({4}-{3}\right)}^{{2}}{\left({4}+{h}\right)}+{4}=0={0}
h{h}=8=-{8}1A
(b)f(x)=(x3)2(x8)+4{f{{\left({x}\right)}}}={\left({x}-{3}\right)}^{{2}}{\left({x}-{8}\right)}+{4}by part(a)
f(x){f{{\left({x}\right)}}}=0={0}
(x3)2(x8)+4{\left({x}-{3}\right)}^{{2}}{\left({x}-{8}\right)}+{4}=0={0}
(x26x+9)(x8)+4{\left({x}^{{2}}-{6}{x}+{9}\right)}{\left({x}-{8}\right)}+{4}=0={0}
(x36x2+9x)+(8x2+48x72)+4{\left({x}^{{3}}-{6}{x}^{{2}}+{9}{x}\right)}+{\left(-{8}{x}^{{2}}+{48}{x}-{72}\right)}+{4}=0={0}
x314x2+57x68{x}^{{3}}-{14}{x}^{{2}}+{57}{x}-{68}=0={0}1A
By long division,
(x4)(x210x+17){\left({x}-{4}\right)}{\left({x}^{{2}}-{10}{x}+{17}\right)}=0={0}1Mfor (x4)(ax2+bx+c){\left({x}-{4}\right)}{\left({a}{x}^{{2}}+{b}{x}+{c}\right)}, steps need not to be shown
(x4)[x+(522)][x(522)]{\left({x}-{4}\right)}{\left[{x}+{\left({5}-{2}\sqrt{{{2}}}\right)}\right]}{\left[{x}-{\left({5}-{2}\sqrt{{{2}}}\right)}\right]}=0={0}
∴  x=4{x}={4} or x=5±22{x}={5}\pm{2}\sqrt{{{2}}}
Note that both 522{5}-{2}\sqrt{{{2}}} and 5+22{5}+{2}\sqrt{{{2}}} are not integers.
Thus, the claim is diagreed.1Af.t.



See Also


專業備試計劃

DSE Preparation Plan


專攻 DSE 數學科,助你高效穩固地提昇評級

Level 4+ 保證及 5** 獎賞

僅中四至中六適用

最優化操練路線

一站滿足所有操數需要

豐富全面溫習套裝及備試工具

首 14 日無條件全額退款



常見問題

有英文版嗎?

有。請在畫面頂部按「用戶」圖示,然後按「設定」。在語言選項中,你可分別選擇「平台語言」及「數學語言」,兩者皆有中英文版。

ePractice 是甚麼?

ePractice 是一個專為中四至中六而設的應用程式,旨為協助學生高效地預備 DSE 數學(必修部分)考試。ePractice 是網站應用程式,因此無論使用任何裝置、平台,都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

為甚麼適合中四至中六學生?

由於正式考試(DSE 數學必修部分)有三分之二(約 67%)的內容是初中程度,因此中四學生已經可以操練大部分的試題。提早開始操練,不但可以早一步掌握考試技巧,更可同時鞏固初中的知識,幫助理解高中數學。ePractice 建議學生只需每天操練約 3-5 題,非常輕鬆,也不需花大量時間,已經可以在不知不覺間高效提昇數學能力了。


簡介

ePractice 可以取代傳統補習嗎?

雖然 ePractice 不能完全取代傳統補習(包括補習班及私人補習),但可以絕大程度滿足學生的補習需求,原因除了 ePractice 有特製的極效練習之外,還有豐富的優質教學影片,其講解的效能比一般補習老師更佳!高效練習配合優質講解 ePractice 有超越補習成效的能力!

ePractice 是甚麼?

ePractice 是一個專為中四至中六而設的應用程式,旨為協助學生高效地預備 DSE 數學(必修部分)考試。ePractice 是網站應用程式,因此無論使用任何裝置、平台,都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

為甚麼適合中四至中六學生?

由於正式考試(DSE 數學必修部分)有三分之二(約 67%)的內容是初中程度,因此中四學生已經可以操練大部分的試題。提早開始操練,不但可以早一步掌握考試技巧,更可同時鞏固初中的知識,幫助理解高中數學。ePractice 建議學生只需每天操練約 3-5 題,非常輕鬆,也不需花大量時間,已經可以在不知不覺間高效提昇數學能力了。


帳戶

「體驗帳戶」可以使用多久?

「體驗帳戶」不會過期,但用戶只能做 30 條題目,而且觀看少部分的知識內容。如希望無限量使用 ePractice 的所有練習服務及內容,請成為我們的會員!


有關訂購

如何訂購正式會員?

在主頁按「訂購備試計劃」,再按「選購計劃」,然後選擇適合你的項目。完成後,系統會為你製作訂單,你只需要根據訂單上的簡易指示繳款即可。

甚麼時候會啟動會員服務?

如閣下使用 PayPal 成功交易,您的會員服務會立即啟動;至於其他付款方式,請把收據發送給我們,我們會在一個工作天內核對交易並啟動您的會藉。

如何查看我的訂單?

在右上角按「用戶」圖像,在「帳單」部分內按「我的帳單」。


有關繳款

有甚麼付款方式?

閣下可使用信用卡 / AlipayHK / Faster Payment System (FPS) 付款。 在確定訂單及揀選付款方式後,會有進一步的流程解說。

退款政策

ePractice 提供對所有會員服務購買的 14 天無條件退款保證(恕不適用於服務期少於兩個月的計劃)。請聯絡我們並提供相關訂單編號以進行退款。如您透過信用卡付款,款項將退回至您的信用卡。如使用其他付款方式,請提供您的銀行帳號、FPS ID 或 PayMe ID 以便進行退款轉帳。


使用疑難

有英文版嗎?

有。請在畫面頂部按「用戶」圖示,然後按「設定」。在語言選項中,你可分別選擇「平台語言」及「數學語言」,兩者皆有中英文版。

可以在 ePractice 列印練習或模擬試卷嗎?

只有「教師配套」才能使用「題目編輯器」列印練習及模擬試卷。學生必須在 ePractice 上進行練習。


聯絡我們

查詢使用疑難、 大量訂購、合作事宜、慈善、發展建議等等,歡迎以下列方法聯絡我們:






Initiating...


HKDSE 數學試題練習平台


Powered by ePractice

ePractice

HKDSE 專業備試平台



「一個人思慮太多,就會失去做人的樂趣。」

威廉・莎士比亞