Question Sample Titled 'Coordinate system of circle involving in-centre and circumcentre and finding possible intersections of circle and tangent'
is an obtuse-angled triangle. Denote the in-centre and the circumcentre of by and respectively. It is given that , and are collinear.
(a) | Prove that | . | (3 marks) | |||||||
(b) | A rectangular coordinate system is introduced so that the coordinates of and are and respectively while the -coordinate of is . Let be the circle which passes through , and . | |||||||||
(i) | Find the equation of . | |||||||||
(ii) | Let and be two tangents to such that the slope of each tangent is and the -intercept of is greater than that of . cuts the -axis and the -axis at and respectively while cuts the -axis and the -axis at and respectively. Someone claims that the aera of the trapezium exceeds Is the claim correct? Explain your answer. | |||||||||
(9 marks) |
(a) | With the notations in the figure, where and are perpendicular bisectors of and respectively. | |||||||||
Consider and , | ||||||||||
definition of in-centre | ||||||||||
common side | ||||||||||
∠ sum of △ | ||||||||||
∴ | ASA | |||||||||
∴ | corr. sides, ≅△s | |||||||||
Marking scheme of (a): | ||||||||||
Case 1 | Any correct proof with correct reasons. | 3M | ||||||||
Case 2 | Any correct proof without reasons. | 2M | ||||||||
Case 3 | Incomplete proof with any one correct step and one correct reason. | 1M | ||||||||
Caution: Any proof based on the assumption that is collinear should be awarded zero marks. | ||||||||||
(b)(i) | ||||||||||
Let the coordinates of be . | ||||||||||
proved | ||||||||||
1M | for using (a) | |||||||||
∴ The coordinates of is . | 1A | |||||||||
Let the equation of be . | 1M | for subsituting , and | ||||||||
Subsitute into the equation of , | ||||||||||
Subsitute and into the equation of , | ||||||||||
Solving, we have , . | ||||||||||
∴ The equation of is | . | 1A | or equivalent | |||||||
(b)(ii) | ||||||||||
Let the -intercepts of and be . | ||||||||||
Subsitute into : | ||||||||||
Since and are tangents to , has only one root. | ||||||||||
of | ||||||||||
or | ||||||||||
Thus, | 2M | for both equations of and | ||||||||
∴ | 1A | for both four points | ||||||||
The area of trapezium | ||||||||||
area ofarea of | accepts other combinations of partitions | |||||||||
r.t. | ||||||||||
Thus, the claim is agreed. | 1A | |||||||||
The figure below shows the coordinate system. For better illustration purpose, the figure is not drawn to scale. |
(a) | Note that is the centre of the circumcircle of . | |||||||||
Join and . | ||||||||||
radii | ||||||||||
definition of in-centre | ||||||||||
∴ | base ∠s, isos. △ | |||||||||
Consider and , | ||||||||||
proved | ||||||||||
proved | ||||||||||
common | ||||||||||
∴ | AAS | |||||||||
∴ | corr. sides, ≅△s | |||||||||
Marking scheme of (a): | ||||||||||
Case 1 | Any correct proof with correct reasons. | 3M | ||||||||
Case 2 | Any correct proof without reasons. | 2M | ||||||||
Case 3 | Incomplete proof with any one correct step and one correct reason. | 1M | ||||||||
Caution: Any proof based on the assumption that is collinear should be awarded zero marks. | ||||||||||
(b)(i) | ||||||||||
Let the coordinates of be . | ||||||||||
proved | ||||||||||
1M | for using (a) | |||||||||
The coordinates of is . | 1A | |||||||||
Denote be the centre of circle . | ||||||||||
Denote the perpendicular bisector of and be and respectively. | ||||||||||
Since and , they must both pass through . | line _|_ chord and bisect chord passes through center | |||||||||
Solving the system of simultaneous equations below would produce the intersection, i.e. coordinates of . | ||||||||||
1M | for correct method attempting to find center of | |||||||||
Solving, we have . | ||||||||||
∴ The coordinates of are . | ||||||||||
The equation of is | ||||||||||
1A | or equivalent | |||||||||
(b)(ii) | ||||||||||
by (b)(i) | ||||||||||
The radius of | ||||||||||
Notice that the slope of is equivalent to that of and . | ||||||||||
Thus, is tangential to at . | ||||||||||
The equation of is | ||||||||||
Denote be a point on such that is a diameter to circle . | ||||||||||
and | mid-pt. theorem | |||||||||
and | ||||||||||
The equation of is | ||||||||||
2M | for both equations of and | |||||||||
∴ | 1A | for both four points | ||||||||
The area of trapezium | ||||||||||
=diameter of | 1A | f.t. | ||||||||
r.t. | ||||||||||
Thus, the claim is agreed. | 1A | |||||||||
The figure below shows the coordinate system. For better illustration purpose, the figure is not drawn to scale. |
DSE Preparation Plan
專攻 DSE 數學科,助你高效穩固地提昇評級
Level 4+ 保證及 5** 獎賞
僅中四至中六適用
最優化操練路線
一站滿足所有操數需要
豐富全面溫習套裝及備試工具
首 14 日無條件全額退款
有英文版嗎?
有。請在畫面頂部按「用戶」圖示,然後按「設定」。在語言選項中,你可分別選擇「平台語言」及「數學語言」,兩者皆有中英文版。
ePractice 是甚麼?
ePractice 是一個專為中四至中六而設的應用程式,旨為協助學生高效地預備 DSE 數學(必修部分)考試。ePractice 是網站應用程式,因此無論使用任何裝置、平台,都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。
為甚麼適合中四至中六學生?
由於正式考試(DSE 數學必修部分)有三分之二(約 67%)的內容是初中程度,因此中四學生已經可以操練大部分的試題。提早開始操練,不但可以早一步掌握考試技巧,更可同時鞏固初中的知識,幫助理解高中數學。ePractice 建議學生只需每天操練約 3-5 題,非常輕鬆,也不需花大量時間,已經可以在不知不覺間高效提昇數學能力了。
ePractice 可以取代傳統補習嗎?
雖然 ePractice 不能完全取代傳統補習(包括補習班及私人補習),但可以絕大程度滿足學生的補習需求,原因除了 ePractice 有特製的極效練習之外,還有豐富的優質教學影片,其講解的效能比一般補習老師更佳!高效練習配合優質講解 ePractice 有超越補習成效的能力!
ePractice 是甚麼?
ePractice 是一個專為中四至中六而設的應用程式,旨為協助學生高效地預備 DSE 數學(必修部分)考試。ePractice 是網站應用程式,因此無論使用任何裝置、平台,都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。
為甚麼適合中四至中六學生?
由於正式考試(DSE 數學必修部分)有三分之二(約 67%)的內容是初中程度,因此中四學生已經可以操練大部分的試題。提早開始操練,不但可以早一步掌握考試技巧,更可同時鞏固初中的知識,幫助理解高中數學。ePractice 建議學生只需每天操練約 3-5 題,非常輕鬆,也不需花大量時間,已經可以在不知不覺間高效提昇數學能力了。
「體驗帳戶」可以使用多久?
「體驗帳戶」不會過期,但用戶只能做 30 條題目,而且觀看少部分的知識內容。如希望無限量使用 ePractice 的所有練習服務及內容,請成為我們的會員!
如何訂購正式會員?
在主頁按「訂購備試計劃」,再按「選購計劃」,然後選擇適合你的項目。完成後,系統會為你製作訂單,你只需要根據訂單上的簡易指示繳款即可。
甚麼時候會啟動會員服務?
如閣下使用 PayPal 成功交易,您的會員服務會立即啟動;至於其他付款方式,請把收據發送給我們,我們會在一個工作天內核對交易並啟動您的會藉。
如何查看我的訂單?
在右上角按「用戶」圖像,在「帳單」部分內按「我的帳單」。
有甚麼付款方式?
閣下可使用信用卡 / AlipayHK / Faster Payment System (FPS) 付款。 在確定訂單及揀選付款方式後,會有進一步的流程解說。
退款政策
ePractice 提供對所有會員服務購買的 14 天無條件退款保證(恕不適用於服務期少於兩個月的計劃)。請聯絡我們並提供相關訂單編號以進行退款。如您透過信用卡付款,款項將退回至您的信用卡。如使用其他付款方式,請提供您的銀行帳號、FPS ID 或 PayMe ID 以便進行退款轉帳。
有英文版嗎?
有。請在畫面頂部按「用戶」圖示,然後按「設定」。在語言選項中,你可分別選擇「平台語言」及「數學語言」,兩者皆有中英文版。
可以在 ePractice 列印練習或模擬試卷嗎?
只有「教師配套」才能使用「題目編輯器」列印練習及模擬試卷。學生必須在 ePractice 上進行練習。
查詢使用疑難、 大量訂購、合作事宜、慈善、發展建議等等,歡迎以下列方法聯絡我們:
HKDSE 數學試題練習平台
Powered by ePractice
ePractice
HKDSE 專業備試平台
「愛對了是愛情,愛錯了是青春。」