### Combination, Permutation and Probability in a game

Question Sample Titled 'Combination, Permutation and Probability in a game'

In each round of a game, stones are dropped randomly one by one into one of the six holes which are placed as a circular ring as shown in the figure. Suppose that each stone has an equal chance to fall into any one of the holes. Each hole can hold at most ${6}$ stones.

holes

A player in the game can choose any one of the following options.

 Option 1: Three stones are dropped one by one. If three stones fall into the same hole, the player can get ${120}$ dollars. If the three stones fall into three different hole, the player gets ${90}$ dollars. Otherwise, the player gets no dollars. Option 2: Four stones are dropped one by one. If four stones fall into the same holes, the player can get ${270}$ dollars. If three of them fall into the same hole, the player can get ${120}$ dollars. If four stones fall into four adjacent holes, the player gets ${120}$ dollars. Otherwise, the player gets no dollars.

 (a) Find the expected dollars got if a player selects option 1. (3 marks) (b) Which option should a player select in order to maximize the expected dollars got? Explain your answer. (4 marks) (c) Michelle selects the option with higher expected dollars got and she plays this game for three rounds. She thinks that her chance of getting no dollars is less than ${0.07}$. Do you agree? Explain your answer. (2 marks)

 (a) ${P}{\left(\text{same hole}\right)}$ $={1}\times\dfrac{{1}}{{6}}\times\dfrac{{1}}{{6}}=\dfrac{{1}}{{36}}$ 1A ${P}{\left(\text{3 in different holes}\right)}$ $={1}\times\dfrac{{5}}{{6}}\times\dfrac{{4}}{{6}}=\dfrac{{5}}{{9}}$ 1A Expected dollars $=\dfrac{{1}}{{36}}\times{120}+\dfrac{{5}}{{9}}\times{90}$  $=\dfrac{{160}}{{3}}$ 1A  (b) For option 2,  ${P}{\left(\text{same hole}\right)}$ $={1}\times\dfrac{{1}}{{6}}\times\dfrac{{1}}{{6}}\times\dfrac{{1}}{{6}}=\dfrac{{1}}{{216}}$ ${P}{\left(\text{3 in the same hole}\right)}$ $={{C}_{{3}}^{{4}}}{\left({1}\times\dfrac{{5}}{{6}}\times\dfrac{{1}}{{6}}\times\dfrac{{1}}{{6}}\right)}$ 1A  $=\dfrac{{5}}{{54}}$ ${P}{\left(\text{4 adjacent holes}\right)}$ $={6}{{P}_{{4}}^{{4}}}{\left(\dfrac{{1}}{{6}}\right)}^{{4}}$ 1A  $=\dfrac{{1}}{{9}}$ Expected dollars $=\dfrac{{1}}{{216}}\times{270}+\dfrac{{5}}{{54}}\times{120}+\dfrac{{1}}{{9}}\times{120}$ 1M  $=\dfrac{{925}}{{36}}$  $<\dfrac{{160}}{{3}}$ The expected dollars of option 1 is higher. Thus, option 1 should be selected. 1A (c) For option 1,  ${P}{\left(\text{no dollars}\right)}$ $={1}-\dfrac{{1}}{{36}}-\dfrac{{5}}{{9}}$  $=\dfrac{{5}}{{12}}$ ${P}{\left(\text{no dollars in 3 rounds}\right)}$ $={\left(\dfrac{{5}}{{12}}\right)}^{{3}}$ 1M  $={0.07233796296296294}$  $>{0.07}$ Thus, Michelle is disagreed. 1A

# 專業備試計劃

Level 4+ 保證及 5** 獎賞

ePractice 會以電郵、Whatsapp 及電話提醒練習

ePractice 會定期提供溫習建議

Level 5** 獎勵：會員如在 DSE 取得數學 Level 5** ，將獲贈一套飛往英國、美國或者加拿大的來回機票，唯會員須在最少 180 日內每天在平台上答對 3 題 MCQ。

Level 4 以下賠償：會員如在 DSE 未能達到數學 Level 4 ，我們將會全額退回所有會費，唯會員須在最少 180 日內每天在平台上答對 3 題 MCQ。

# FAQ

ePractice 是甚麼？

ePractice 是一個專為中四至中六而設的網站應用程式，旨為協助學生高效地預備 DSE 數學（必修部分）考試。由於 ePractice 是網站應用程式，因此無論使用任何裝置、平台，都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

ePractice 可以取代傳統補習嗎？

1. 會員服務期少於兩個月；或
2. 交易額少於 HK\$100。

Initiating...

HKDSE 數學試題練習平台