### Changes of variance, mean and range after adding a value

Question Sample Titled 'Changes of variance, mean and range after adding a value'

Let ${x}_{{1}},{y}_{{1}}$ and ${z}_{{1}}$ be the mean, the range and the variance of a group of numbers ${\left\lbrace{a}_{{1}},{a}_{{2}},{a}_{{3}},\ldots,{a}_{{105}}\right\rbrace}$ respectively. If ${x}_{{2}},{y}_{{2}}$ and ${z}_{{2}}$ are the mean, the range and the variance of the group of numbers ${\left\lbrace{a}_{{1}},{a}_{{2}},{a}_{{3}},\ldots,{a}_{{105}},{x}_{{1}}\right\rbrace}$ respectively. Which of the following must be true?

 I. ${x}_{{1}}={x}_{{2}}$ II. ${y}_{{1}}={y}_{{2}}$ III. ${z}_{{1}}={z}_{{2}}$

A
I and II only
B
I, II and III
C
II and III only
D
I and III only

 (I) By adding the mean of the old set of data into the new set of data, the mean would remain unchanged. Below is the mathematical explanation. ${x}_{{1}}$ $=\dfrac{{1}}{{105}}{\left({a}_{{1}}+{a}_{{2}}+{a}_{{3}}+\ldots+{a}_{{105}}\right)}$ given ${a}_{{1}}+{a}_{{2}}+{a}_{{3}}+\ldots+{a}_{{105}}$ $={105}{x}_{{1}}$ New mean $={x}_{{2}}$  $=\dfrac{{1}}{{106}}{\left({a}_{{1}}+{a}_{{2}}+{a}_{{3}}+\ldots+{a}_{{105}}+{x}_{{1}}\right)}$  $=\dfrac{{1}}{{106}}{\left({105}{x}_{{1}}+{x}_{{1}}\right)}$  $=\dfrac{{1}}{{106}}{\left({106}{x}_{{1}}\right)}$  $={x}_{{1}}$ ∴  ${x}_{{1}}$ $={x}_{{2}}$ (II) As the range is the difference of the largest datum and the smallest datum, adding the mean of the old set of data into the new set of data would not change the range. ∴  ${y}_{{1}}$ $={y}_{{2}}$ (III) Adding the mean of the old set of data into the new set of data would decrease the dispersion of the data by decreasing the standard variance.  As variance is the square of standard deviation ∴   The new variance would decrease as well. Below is the mathematical explanation. ${z}_{{1}}=\dfrac{{1}}{{105}}{\left[{\left({a}_{{1}}-{x}_{{1}}\right)}^{{{2}}}+{\left({a}_{{2}}-{x}_{{1}}\right)}^{{{2}}}+\ldots+{\left({a}_{{105}}-{x}_{{1}}\right)}^{{{2}}}\right]}$ ${z}_{{2}}=\dfrac{{1}}{{106}}{\left[{\left({a}_{{1}}-{x}_{{1}}\right)}^{{{2}}}+{\left({a}_{{2}}-{x}_{{1}}\right)}^{{{2}}}+\ldots+{\left({a}_{{105}}-{x}_{{1}}\right)}^{{{2}}}+{\left({x}_{{1}}-{x}_{{1}}\right)}^{{{2}}}\right]}$ $=\dfrac{{1}}{{106}}{\left[{\left({a}_{{1}}-{x}_{{1}}\right)}^{{{2}}}+{\left({a}_{{2}}-{x}_{{1}}\right)}^{{{2}}}+\ldots+{\left({a}_{{105}}-{x}_{{1}}\right)}^{{{2}}}+{0}\right]}$ $=\dfrac{{1}}{{106}}{\left[{\left({a}_{{1}}-{x}_{{1}}\right)}^{{{2}}}+{\left({a}_{{2}}-{x}_{{1}}\right)}^{{{2}}}+\ldots+{\left({a}_{{105}}-{x}_{{1}}\right)}^{{{2}}}\right]}$ Note that ${z}_{{1}}$ and ${z}_{{2}}$ have the same numerator but a different denominator. ∴  ${z}_{{1}}>{z}_{{2}}$ as ${z}_{{2}}$ has a larger denominator.

# 專業備試計劃

Premium DSE Preparation Plan

Level 4+ 保證及 5** 獎賞

ePractice 會以電郵、Whatsapp 及電話提醒練習

ePractice 會定期提供溫習建議

Level 5** 獎勵：會員如在 DSE 取得數學 Level 5** ，將獲贈一套飛往英國、美國或者加拿大的來回機票，唯會員須在最少 180 日內每天在平台上答對 3 題 MCQ。

Level 4 以下賠償：會員如在 DSE 未能達到數學 Level 4 ，我們將會全額退回所有會費，唯會員須在最少 180 日內每天在平台上答對 3 題 MCQ。

# FAQ

ePractice 是甚麼？

ePractice 是一個專為中四至中六而設的網站應用程式，旨為協助學生高效地預備 DSE 數學（必修部分）考試。由於 ePractice 是網站應用程式，因此無論使用任何裝置、平台，都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

ePractice 可以取代傳統補習嗎？

1. 會員服務期少於兩個月；或
2. 交易額少於 HK\$100。

Initiating...

HKDSE 數學試題練習平台

Powered by ePractice

ePractice

HKDSE 試題導向練習平台

「讀書不是為了雄辯和駁斥，也不是為了輕信和盲從，而是為了思考和權衡。」