(a)(i) | 藉餘弦公式, | | | | | | | |
| AC2 | =AB2+BC2−2(AB)(BC)(cos∠ABC) | | | | | 1M | | |
| AC2 | =362+262−2(36)(26)(cos∠ABC∘) | | | | | | | |
| AC | =41.36989189 cm | | | | | | | |
| AC | ≈41.4 cm | | | | | 1A | |
| 因此, A 與 C 之間的距離為 41.4 cm 。 | | | | | | | |
(a)(ii) | 藉正弦公式, | | | | | | | |
| ABsin∠ACB | =ACsin∠ABC | | | | | 1M | | |
| 36sin∠ACB | =41.36989189sin82∘ | | | | | | | |
| ∠ACB | ≈59.51131342 or ∠ACB≈120.4886866∘ (捨去) | | | | | | | |
| ∠ACB | ≈59.5∘ | | | | | 1A | |
| | | | | | | | |
(a)(iii) | ∠CAD | | | | | | | |
| =180∘−2(∠BCD−∠ACB) | | base ∠s, isos. △ | | | | | |
| =180∘−2(∠BCD−59.51131342∘) | | | | | | | |
| ∵ 90∘≤∠BCD≤140∘ , | | | | | | | |
| ∴ 19.02262683∘≤∠CAD≤119.0226268∘ | | | | | | | |
| | | | | | | | |
| 該紙卡的面積 | | | | | | | |
| =2(21(36)(26)sin82∘)+21AC2sin∠CAD | | | | | 1M | | |
| =936sin82∘+21AC2sin∠CAD | | | | | | | |
| 留意到 936sin82∘ 及 AC 均為常數,因此該紙卡的面積 sin∠CAD 隨正變。 | | | | | 1M | | |
| 再者留意到當 ∠CAD | =90∘ 時,因 sin90∘ 為最大,故此該紙卡的面積最大。 | | | | | | | |
| 當 ∠CAD=90∘ , ∠BCD=59.51131342∘+2180∘−90∘=104.5113134∘ 。 | | | | | | |
| 因此,當 ∠BCD 由 90∘ 增加至 104.5113134∘ 期間,該紙卡的面積增加。 | | | | | 1A | |
| 當 ∠BCD 由 104.5113134∘ 增加至 140∘ 期間,該紙卡的面積減少。 | | | | | |
| | | | | | | | |
| | | | | | | | |
(b) | 設 M 為 CD 的中點。 | | | | | | | |
| ∠ACM | | | | | | | |
| =129∘−59.51131342∘ | | | | | | | |
| =69.48868658∘ | | | | | | | |
| 考慮 △ACM, | | | | | | | |
| sin∠ACM | =ACAM | | | | | 1M | | |
| sin69.48868658∘ | =41.36989189AM | | | | | | | |
| AM | =38.74716569 cm | | | | | | | |
| CM | =√AC2−AM2 | | | | | | | |
| CM | =√41.369891892−38.747165692 | | | | | | | |
| | =14.49569266 cm | | | | | | | |
| 考慮 △BCD , | | | | | | | |
| BM | =√BC2−CM2 | | | | | | | |
| BM | =√262−14.495692662 | | | | | | | |
| BM | =21.58413525 cm | | | | | | | |
| 考慮 △ABM,藉餘弦公式, | | | | | | | |
| cos∠AMB | =2(AM)(BM)(AM)2+(BM)2−(AB)2 | | | | | 1M | | |
| cos∠AMB | ≈2(38.74716569)(21.58413525)38.747165692+21.584135252−362 | | | | | | | |
| ∠AMB | ≈66.34112358∘ | | | | | | | |
| | | | | | | | |
| 角錐體 ABCD 的高 | | | | | | | |
| =BMsin∠AMB | | | | | 1M | |
| =21.58413525sin66.34112358∘ | | | | | | | |
| =19.77000707 cm | | | | | | | |
| | | | | | | | |
| △ACD 的面積 | | | | | | | |
| =21(CD)(AM) | | | | | 1M | |
| =21(2CM)(38.74716569) | | | | | | | |
| =21(2√AC2−AM2)(38.74716569) | | | | | | | |
| =21(2√41.369891892−38.747165692)(38.74716569) | | | | | | | |
| =561.6670053 cm2 | | | | | | | |
| | | | | | | | |
| 角錐體 ABCD 的體積 | | | | | | | |
| =31(△ACD的面積)(角錐體 ABCD 的高) | | | | | 1M | | |
| =31(561.6670053)(19.77000707) | | | | | | | |
| =3701.386889 cm2 | | | | | | | |
| ≈3700 cm3 | | | | | 1A | |