### 誤差

 ${\left({a}\right)}$ The difference in value between an approximation and the actual value is called the absolute error. It is always positive.

If the length of a bridge is ${19.4}\text{km}$, but when Ken tells the reporters he rounds it up and says it is ${20}\text{km}$ long. In this case, the absolute error is ${0.6}\text{km}$.

 ${\left({b}\right)}$ In measurement, the actual value and the absolute error cannot be found. However, the largest possible error of the measured value, which is called maximum absolute error, can be determined. Maximum absolute error $=\dfrac{{1}}{{2}}\times$ scale interval of the measuring tool Lower limit of the actual value $=$ measured value $-$ maximum absolute error Upper limit of the actual value $=$ measured value $+$ maximum absolute error

Peter measures his height with a ruler in which the smallest interval is ${1}\text{cm}$. In this case, the maximum absolute error will be ${0.5}\text{cm}$.

If the result of measurement is ${172}\text{cm}$, then the lower limit of his actual height is ${171.5}\text{cm}$ and the upper limit of his actual height is ${172.5}\text{cm}$ .

 ${\left({c}\right)}$ Relative error $=\dfrac{\text{absolute}}{\text{actual value}}{(}$or $\dfrac{\text{maximum absolute error}}{\ \text{ measured value}}$)

As in above example, if the actual height of Peter is ${172.4}\text{cm}$ , then the "relative error from actual value" is $\dfrac{{{172.4}-{172}}}{{172.4}}\approx{0.00232}$ .

On the other hand, the "relative error of his measurement method" is $\dfrac{{0.5}}{{172}}\approx{0.00291}$ .

 ${\left({d}\right)}$ Percentage error $=$ relative error$\times$100%

As in above example, the "percentage error from actual value" is $\dfrac{{{172.4}-{172}}}{{172.4}}\times{100}\%\approx{0.232}\%$.

On the other hand, the "percentage error of his measurement method" is $\dfrac{{0.5}}{{172}}\times{100}\%\approx{0.291}\%$.

When measurements like length and width are substituted into a formula to find another quantity like perimeter and area, the errors in measurements will lead to an error in the result. We describe errors that arise in this way as accumulated errors.

*聲明：此資源並不屬於 ePractice ，僅屬外部資源建議。ePractice 不就其內容負責亦不收受其產生的任何收益。

# 專業備試計劃

DSE Preparation Plan

Level 4+ 保證及 5** 獎賞

### 常見問題

ePractice 是甚麼？

ePractice 是一個專為中四至中六而設的應用程式，旨為協助學生高效地預備 DSE 數學（必修部分）考試。ePractice 是網站應用程式，因此無論使用任何裝置、平台，都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

### 簡介

ePractice 可以取代傳統補習嗎？

ePractice 是甚麼？

ePractice 是一個專為中四至中六而設的應用程式，旨為協助學生高效地預備 DSE 數學（必修部分）考試。ePractice 是網站應用程式，因此無論使用任何裝置、平台，都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

### 帳戶

「體驗帳戶」可以使用多久？

「體驗帳戶」不會過期，但用戶只能做 30 條題目，而且觀看少部分的知識內容。如希望無限量使用 ePractice 的所有練習服務及內容，請成為我們的會員！

### 有關繳款

ePractice 提供對所有會員服務購買的 14 天無條件退款保證（恕不適用於服務期少於兩個月的計劃）。請聯絡我們並提供相關訂單編號以進行退款。如您透過信用卡付款，款項將退回至您的信用卡。如使用其他付款方式，請提供您的銀行帳號、FPS ID 或 PayMe ID 以便進行退款轉帳。

Initiating...

HKDSE 數學試題練習平台