### 一圓與一直線可能的相交點

 For the simultaneous equations

 ${y}={m}{x}+{c}$ ${x}^{{2}}+{y}^{{2}}+{D}{x}+{E}{y}+{F}={0}$

 by subsitituting the equations of the straight line ${y}={m}{x}+{c}$ into the equation of the circle ${x}^{{2}}+{y}^{{2}}+{D}{x}+{E}{y}+{F}={0}$ ,  we can obtain the quadratic equation ${x}^{{2}}+{\left({m}{x}+{c}\right)}^{{2}}+{D}{x}+{E}{\left({m}{x}+{c}\right)}+{F}={0}$ . By considering the discriminant ${\left(\Delta\right)}$ of this equation, we have the following three cases:

Discriminant${\left(\Delta={b}^{{2}}-{4}{a}{c}\right)}$$\Delta\gt{0}$$\Delta={0}$$\Delta\lt{0}$
No. of intersections

 Note: ${1}.$ If $\Delta={0}$, then the straight line is a tangent to the circle. ${2}.$ 2. If the straight line is a tangent to the circle, then $\Delta={0}$ .

 Example Determine the number of intersections between the straight line ${L}$: ${2}{x}+{3}{y}-{6}$ $={0}$ and the circle ${S}$: ${x}^{{2}}+{y}^{{2}}-{4}{x}+{2}{y}+{1}={0}$ .

 Solution ${2}{x}+{3}{y}-{6}$ $={0}$ $\ldots{\left({1}\right)}$ ${x}^{{2}}+{y}^{{2}}-{4}{x}+{2}{y}+{1}$ $={0}$ $\ldots{\left({2}\right)}$ From ${\left({1}\right)}$ , we have  ${y}$ $=-\dfrac{{2}}{{3}}{x}+{2}$ $\ldots{\left({3}\right)}$ By substituting ${\left({3}\right)}$ into ${\left({2}\right)}$ , we have  ${x}^{{2}}+{\left(-\dfrac{{2}}{{3}}{x}+{2}\right)}^{{2}}-{4}{x}+{2}{\left(-\dfrac{{2}}{{3}}{x}+{2}\right)}+{1}$ $={0}$ ${13}{x}^{{2}}-{72}{x}+{81}$ $={0}$ For the equation ${13}{x}^{{2}}-{72}{x}+{81}={0}$ ,  $\Delta={\left(-{72}\right)}^{{2}}-{4}{\left({13}\right)}{\left({81}\right)}={972}\gt{0}$ ∴   There are two intersections between the straight line and the circle.

*聲明：此資源並不屬於 ePractice ，僅屬外部資源建議。ePractice 不就其內容負責亦不收受其產生的任何收益。

*聲明：此資源並不屬於 ePractice ，僅屬外部資源建議。ePractice 不就其內容負責亦不收受其產生的任何收益。

# 專業備試計劃

Level 4+ 保證及 5** 獎賞

ePractice 會以電郵、Whatsapp 及電話提醒練習

ePractice 會定期提供溫習建議

Level 5** 獎勵：會員如在 DSE 取得數學 Level 5** ，將獲贈一套飛往英國、美國或者加拿大的來回機票，唯會員須在最少 180 日內每天在平台上答對 3 題 MCQ。

Level 4 以下賠償：會員如在 DSE 未能達到數學 Level 4 ，我們將會全額退回所有會費，唯會員須在最少 180 日內每天在平台上答對 3 題 MCQ。

# FAQ

ePractice 是甚麼？

ePractice 是一個專為中四至中六而設的網站應用程式，旨為協助學生高效地預備 DSE 數學（必修部分）考試。由於 ePractice 是網站應用程式，因此無論使用任何裝置、平台，都可以在瀏覽器開啟使用。更多詳情請到簡介頁面。

ePractice 可以取代傳統補習嗎？

1. 會員服務期少於兩個月；或
2. 交易額少於 HK\$100。

Initiating...

HKDSE 數學試題練習平台